

# PXIe-6739

# **Specifications**





Test & Measurement Automation

**Embedded Control & Monitoring** 

Cyth Systems 9939 Via Pasar San Diego, CA 92126

phone (858) 537-1960 support@cyth.com



Authorized Distributor



Integration Partner

# **Contents**

| PXIe-6739                 |           | 3 |
|---------------------------|-----------|---|
| i Aic 0199 specifications | , <b></b> | • |

# PXIe-6739 Specifications

# **PXIe-6739 Specifications**

#### **Definitions**

**Warranted** specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

**Characteristics** describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are *Typical* unless otherwise noted.

#### **Conditions**

Specifications are valid at 25 °C unless otherwise noted.

#### PXIe-6739 Pinout

| CONNECTOR 0<br>(AO 0-31) |                     | ı  |               |                     | CTO<br>2–63 |                     |    |               |                     |         |
|--------------------------|---------------------|----|---------------|---------------------|-------------|---------------------|----|---------------|---------------------|---------|
|                          |                     | _  | $\overline{}$ | )                   |             |                     | _  | $\overline{}$ | )                   |         |
| Bank                     | AO GND 30/31        | 68 | 34            | AO 31               |             | AO GND 62/63        | 68 | 34            | AO 63               | AO      |
| Ba                       | AO 30               | 67 | 33            | AO GND 28/29        |             | AO 62               | 67 | 33            | AO GND 60/61        | ) Bank  |
| AO                       | AO 29               | 66 | 32            | AO 28               |             | AO 61               | 66 | 32            | AO 60               | 媡       |
| 녿                        | AO GND 26/27        | 65 | 31            | AO 27               |             | AO GND 58/59        | 65 | 31            | AO 59               | ≥       |
| Bank                     | AO 26               | 64 | 30            | AO GND 24/25        |             | AO 58               | 64 | 30            | AO GND 56/57        | AO Bank |
| AO                       | AO 25               | 63 | 29            | AO 24               |             | AO 57               | 63 | 29            | AO 56               | 泉       |
| ¥                        | AO GND 22/23        | 62 | 28            | AO 23               |             | AO GND 54/55        | 62 | 28            | AO 55               | ➤       |
| Bank                     | AO 22               | 61 | 27            | AO GND 20/21        |             | AO 54               | 61 | 27            | AO GND 52/53        | AO Bank |
| AO                       | AO 21               | 60 | 26            | AO 20               |             | AO 53               | 60 | 26            | AO 52               | an k    |
|                          | AO GND 18/19        | 59 | 25            | AO 19               |             | AO GND 50/51        | 59 | 25            | AO 51               |         |
| Bank                     | AO 18               | 58 | 24            | AO GND 16/17        |             | AO 50               | 58 | 24            | AO GND 48/49        | AO Bank |
| AO                       | AO 17               | 57 | 23            | AO 16               |             | AO 49               | 57 | 23            | AO 48               | an      |
|                          | AO GND <sup>1</sup> | 56 | 22            | AO 15               |             | AO GND <sup>1</sup> | 56 | 22            | AO 47               |         |
| Bank                     | AO GND 14/15        | 55 | 21            | AO 14               |             | AO GND 46/47        | 55 | 21            | AO 46               | AO Bank |
| AOE                      | AO 13               | 54 | 20            | AO GND 12/13        |             | AO 45               | 54 | 20            | AO GND 44/45        | Ban     |
|                          | AO 12               | 53 | 19            | AO GND <sup>1</sup> |             | AO 44               | 53 | 19            | AO GND <sup>1</sup> |         |
| Bank                     | AO 11               | 52 | 18            | AO GND 11           |             | AO 43               | 52 | 18            | AO GND 43           | AO Bank |
|                          | AO 10               | 51 | 17            | AO 9                |             | AO 42               | 51 | 17            | AO 41               | Bar     |
| AO                       | AO GND 8/9/10       | 50 | 16            | AO 8                |             | AO GND 40/41/42     | 50 | 16            | AO 40               | ᅡ       |
| Bank                     | AO GND 6/7          | 49 | 15            | AO 7                |             | AO GND 38/39        | 49 | 15            | AO 39               | A       |
|                          | AO 6                | 48 | 14            | AO GND 4/5          |             | AO 38               | 48 | 14            | AO GND 36/37        | AO Bank |
| AO                       | AO 5                | 47 | 13            | AO 4                |             | AO 37               | 47 | 13            | AO 36               | 흣       |
| Bank                     | AO GND 2/3          | 46 | 12            | AO 3                |             | AO GND 34/35        | 46 | 12            | AO 35               | A       |
| Ba                       | AO 2                | 45 | 11            | AO GND 0/1          |             | AO 34               | 45 | 11            | AO GND 32/33        | AO Bank |
| AO                       | AO 1                | 44 | 10            | AO 0                |             | AO 33               | 44 | 10            | AO 32               | Ě       |
|                          | D GND <sup>1</sup>  | 43 | 9             | PFI 7/P1.7          |             | D GND <sup>1</sup>  | 43 | 9             | PFI 15/P2.7         |         |
|                          | D GND PFI 6/7       | 42 | 8             | PFI 6/P1.6          |             | D GND PFI 14/15     | 42 | 8             | PFI 14/P2.6         |         |
|                          | D GND PFI 4/5       | 41 | 7             | PFI 5/P1.5          |             | D GND PFI 12/13     | 41 | 7             | PFI 13/P2.5         |         |
|                          | PFI 4/P1.4          | 40 | 6             | PFI 3/P1.3          |             | PFI 12/P2.4         | 40 | 6             | PFI 11/P2.3         |         |
|                          | D GND PFI 2/3       | 39 | 5             | PFI 2/P1.2          |             | D GND PFI 10/11     | 39 | 5             | PFI 10/P2.2         |         |
|                          | PFI 1/P1.1          | 38 | 4             | PFI 0/P1.0          |             | PFI 9/P2.1          | 38 | 4             | PFI 8/P2.0          |         |
|                          | D GND PFI 0/1       | 37 | 3             | P0.1                |             | D GND PFI 8/9       | 37 | 3             | P0.3                |         |
|                          | D GND P0.0/0.1      | 36 | 2             | P0.0                |             | D GND P0.2/0.3      | 36 | 2             | P0.2                |         |
|                          | D GND <sup>1</sup>  | 35 | 1             | +5 V                |             | D GND <sup>1</sup>  | 35 | 1             | +5 V                |         |
|                          |                     |    |               | J                   |             |                     |    |               | J                   |         |
|                          |                     |    | $\sim$        |                     | 1           |                     |    | $\sim$        |                     |         |

<sup>&</sup>lt;sup>1</sup> No connect when using the SHC68-68-A2 cable.

Table 1. Default Counter/Timer Terminals

| Counter/Timer Signal | Default PFI Terminal |
|----------------------|----------------------|
| CTR 0 SRC            | PFI 5                |
| CTR 0 GATE           | PFI 6                |
| CTR 0 AUX            | PFI 4                |
| CTR 0 OUT            | PFI 7                |
| CTR 0 A              | PFI 5                |
| CTR 0 Z              | PFI 6                |
| CTR 0 B              | PFI 4                |
| CTR 1 SRC            | PFI 0                |
| CTR 1 GATE           | PFI 1                |

| Counter/Timer Signal | Default PFI Terminal |
|----------------------|----------------------|
| CTR 1 AUX            | PFI 3                |
| CTR 1 OUT            | PFI 2                |
| CTR 1 A              | PFI 0                |
| CTR 1 Z              | PFI 1                |
| CTR 1 B              | PFI 3                |
| CTR 2 SRC            | PFI 13               |
| CTR 2 GATE           | PFI 14               |
| CTR 2 AUX            | PFI 12               |
| CTR 2 OUT            | PFI 15               |
| CTR 2 A              | PFI 13               |
| CTR 2 Z              | PFI 14               |
| CTR 2 B              | PFI 12               |
| CTR 3 SRC            | PFI 8                |
| CTR 3 GATE           | PFI 9                |
| CTR 3 AUX            | PFI 11               |
| CTR 3 OUT            | PFI 10               |
| CTR 3 A              | PFI 8                |
| CTR 3 Z              | PFI 9                |
| CTR 3 B              | PFI 11               |

Table 2. Signal Descriptions

| Signal   | Reference | Description                                                         |
|----------|-----------|---------------------------------------------------------------------|
| AO <063> | AO GND    | Analog Output<br>Channels—These terminals<br>supply voltage output. |
| AO GND   | _         | Analog Output                                                       |

| Signal  | Reference | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |           | Ground—AO GND is the reference for the AO channels. When AO GND is listed next to an analog signal name, it is the dedicated ground reference for the listed signals (for example, AO GND 2/3 is the ground reference for AO 2 and AO 3). All ground references—AO GND and D GND—are connected on the device. Though AO GND and D GND are connected on the device, they are connected by small traces to reduce crosstalk between subsystems. Each ground may have a slight difference in potential. |
| D GND   |           | Digital Ground—D GND supplies the reference for port 0, port 1, port 2 digital channels, PFI, and +5 V. When D GND is listed with a number, it is the dedicated ground reference for that PFI signal. All ground references—AO GND and D GND—are connected on the device. Though AO GND and D GND are connected on the device, they are connected by small traces to reduce crosstalk between subsystems. Each ground may have a slight difference in potential.                                     |
| P0.<03> | D GND     | Port 0 Digital I/O Channels—You can configure each signal                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Signal                              | Reference | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |           | individually as an input or output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| +5 V                                | D GND     | +5 V Power Source—These<br>terminals provide a fused +5 V<br>power source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PFI <07>/P1.<07>, PFI <815>/P2.<07> | D GND     | Programmable Function Interface or Digital I/O Channels—Each of these terminals can be individually configured as a PFI terminal or a digital I/O terminal.  As an input, each PFI terminal can be used to supply an external source for AO, DI, and DO timing signals or counter/ timer inputs. As a PFI output, you can route many different internal AO, DI, or DO timing signals to each PFI terminal. You can also route the counter/ timer outputs to each PFI terminal. As a port 1 or port 2 digital I/O signal, you can individually configure each signal as an input or output. |
| NC                                  | _         | No connect—Do not connect signals to this terminal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

### **Analog Output**

| Number of channels                                  | 64 voltage outputs                             |          |  |
|-----------------------------------------------------|------------------------------------------------|----------|--|
| Resolution                                          | 16 bits, 1 in 65,536                           |          |  |
| DNL                                                 | ±1.0 LSB maximum                               |          |  |
| Unscaled data format <sup>1</sup>                   | Unsigned integer (0 to 65,535)                 |          |  |
| Monotonicity                                        | 16 bits                                        |          |  |
| Accuracy                                            | Refer to the <i>AO Absolute Accuracy</i> table |          |  |
| Maximum update rate (using local FIFO) <sup>2</sup> |                                                |          |  |
| 1 channel                                           |                                                | 1 MS/s   |  |
| 16 channels (1 channel per bank) <sup>3 [3]</sup>   |                                                | 1 MS/s   |  |
| 64 channels <sup>[3]</sup>                          |                                                | 350 kS/s |  |

- 1. Used for writing unscaled or raw data and covers the range from negative full scale (0) to positive full scale (65,535).
- 2. These numbers apply to continuous waveform generation using onboard memory only, which allows for the highest update rate by doing a single transfer of data over the bus. The maximum update rate in FIFO mode does not change regardless of the number of devices in the system.
- 3. All analog output channels are grouped into banks, as shown in your device pinout. Each bank consists of four AO channels using one DAC. Any channels being used within a single bank will update simultaneously.

| Timing accuracy (warranted)       | 50 ppm of sample rate                     |
|-----------------------------------|-------------------------------------------|
| Timing resolution                 | 10 ns                                     |
| Output range                      | ±10 V                                     |
| Output coupling                   | DC                                        |
| Output impedance                  | 0.2 Ω                                     |
| Output current drive <sup>4</sup> | ±10 mA                                    |
| Overdrive protection              | ±15 V                                     |
| Overdrive current                 | 15 mA                                     |
| Power-on state                    | ±200 mV                                   |
| Power-on/off glitch               | 2.5 V peak for 100 ms                     |
| FIFO buffer size                  | 65,535 samples shared among channels used |
| Data transfers                    | DMA (scatter-gather), programmed I/O      |

#### AO waveform modes

4. Analog output channels are designed for four-quadrant (source and sink) operation.

- Nonperiodic waveform
- Periodic waveform regeneration mode from onboard FIFO
- · Periodic waveform regeneration from host buffer including dynamic update

| Settling time, full scale step | 15 μs to ±4 LSB                                                                                             |        |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------|--------|--|--|
| Slew rate                      | 3.0 V/μs                                                                                                    |        |  |  |
| Noise                          | 1.0 mV RMS, DC to 1 MHz                                                                                     |        |  |  |
| AO update glitch               |                                                                                                             |        |  |  |
| Magnitude                      |                                                                                                             | 3.0 mV |  |  |
| Duration                       |                                                                                                             | 10 μs  |  |  |
| Glitch energy                  |                                                                                                             | 3 nVs  |  |  |
| Channel crosstalk              | -65 dB with SHC68-68-A2 cable (generating a 10 V, 100 point sinusoidal at 100 kHz on the reference channel) |        |  |  |
| Output stability               | Any passive load                                                                                            |        |  |  |



**Note** AO update glitch is the glitch energy that occurs on all channels on the same bank as the result of a channel update, regardless of value. For example, if you update the value of AO 0, all channels within that bank AO <0..3> will experience this glitch regardless of whether their output voltages change.

### **Absolute Accuracy (Warranted)**

Absolute accuracy at full-scale number is valid immediately following self calibration and assumes the device is operating within 10 °C of the last external calibration.

Table 3. AO Absolute Accuracy

| Nominal<br>Range<br>Positive<br>Full<br>Scale | Nominal<br>Range<br>Negative<br>Full<br>Scale | Residual<br>Gain<br>Error<br>(ppm of<br>Reading) | Gain<br>Tempco<br>(ppm/°C) | Reference<br>Tempco<br>(ppm/°C) | Offset<br>Tempco<br>(ppm) | Residual<br>Offset<br>Error<br>(ppm of<br>Range) | INL Error<br>(ppm of<br>Range) | Absolute Accuracy at Full Scale (µV) |
|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------|----------------------------|---------------------------------|---------------------------|--------------------------------------------------|--------------------------------|--------------------------------------|
| 10                                            | -10                                           | 109                                              | 12                         | 1                               | 4                         | 95                                               | 64                             | 2,940                                |



Note Accuracies listed are valid for up to two years from the device external calibration.

#### **AO Absolute Accuracy Equation**

```
AbsoluteAccuracy = OutputValue (GainError) + Range (OffsetError)
AbsoluteAccuracy = OutputValue · (GainError) + Range · (OffsetError)
GainError = ResidualGainError + GainTempco · (TempChangeFromLastInternalCal) + ReferenceTempco · (TempChangeFromLastExternalCal)
GainError = ResidualGainError + GainTempco (TempChangeFromLastInternalCal) + ReferenceTempco (TempChangeFromLastExternalCal)
OffsetError = ResidualOffsetError + OffsetTempco · (TempChangeFromLastInternalCal) + INL_Error
OffsetError = ResidualOffsetError + OffsetTempco · (TempChangeFromLastInternalCal) + INL_Error
```

### **Digital I/O/PFI**

#### **Static Characteristics**

| Number of channels | 20 total, 4 (P0.<03>), 16 (PFI<07>/P1.<07>, PFI <815>/P2.<07>) |
|--------------------|----------------------------------------------------------------|
| Ground reference   | D GND                                                          |
| Direction control  | Each terminal individually programmable as input or output     |

| Pull-down resistor                    | 50 kΩ typical, 20 kΩ minimum |
|---------------------------------------|------------------------------|
| Input voltage protection <sup>5</sup> | ±20 V on up to two pins      |

# Waveform Characteristics (Port 0 Only)

| Terminals used                 |        | Port 0 (P0.<03>)                               |
|--------------------------------|--------|------------------------------------------------|
| Port/sample size               |        | Up to 4 bits                                   |
| Waveform generation (DO) FIFO  |        | 2,047 samples                                  |
| Waveform acquisition (DI) FIFO |        | 255 samples                                    |
| DI Sample Clock Frequency      |        | 0 to 10 MHz, system and bus activity dependent |
| DO Sample Clock frequency      |        |                                                |
| Regenerate from FIFO           | 0 to 1 | 10 MHz                                         |
| Streaming from memory          | 0 to   | 10 MHz, system and bus activity dependent      |
| Data transfers                 |        | DMA (scatter-gather), programmed I/O           |
| Digital line filter settings   |        | 160 ns, 10.24 μs, 5.12 ms, disable             |

<sup>5.</sup> Stresses beyond those listed under Input voltage protection may cause permanent damage to the device.

# PFI/Port 1/Port 2 Functionality

| Functionality            | Static digital input, static digital output, timing input, timing output                                       |
|--------------------------|----------------------------------------------------------------------------------------------------------------|
| Timing output sources    | Many Al, AO, counter, DI, DO timing signals                                                                    |
| Debounce filter settings | 90 ns, 5.12 μs, 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input |

# **Recommended Operating Conditions**

| Input high voltage (V <sub>IH</sub> )  | 2.2 V minimum, 5.25 | 5 V maximum    |
|----------------------------------------|---------------------|----------------|
| Input low voltage (V <sub>IL</sub> )   | 0 V minimum, 0.8 V  | maximum        |
| Output high current (I <sub>OH</sub> ) |                     |                |
| P0.<03>                                |                     | -24 mA maximum |
| PFI <015>/PI<07>/P2.<07>               |                     | -16 mA maximum |
| Output low current (I <sub>OL</sub> )  |                     |                |
| P0.<03>                                |                     | 24 mA maximum  |
| PFI <015>/P1<07>/P2.<07>               |                     | 16 mA maximum  |

# **Electrical Characteristics**

| Level                                                      | Minimum | Maximum |
|------------------------------------------------------------|---------|---------|
| Positive-going threshold (VT+)                             | _       | 2.2 V   |
| Negative-going threshold (VT-)                             | 0.8 V   | _       |
| Delta VT hysteresis (VT+ - VT-)                            | 0.2 V   |         |
| I <sub>IL</sub> input low current (V <sub>in</sub> = 0 V)  | _       | -10 μΑ  |
| I <sub>IH</sub> input high current (V <sub>in</sub> = 5 V) | _       | 250 μΑ  |

### **Digital I/O Characteristics**

Figure 1. P0.<0..3>: I<sub>OH</sub> versus V<sub>OH</sub>

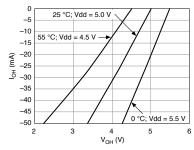



Figure 2. PFI <0..15>/PI/P2: I<sub>OH</sub> versus V<sub>OH</sub>

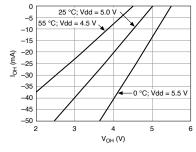



Figure 3. P0.<0..3>: I<sub>OL</sub> versus V<sub>OL</sub>

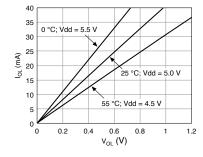
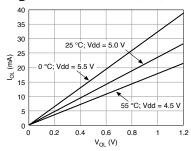




Figure 4. PFI <0..15>/P1/P2: I<sub>OL</sub> versus V<sub>OL</sub>



# Timing I/O

| Number of counter/timers           | 4                                                                                     |
|------------------------------------|---------------------------------------------------------------------------------------|
| Resolution                         | 32 bits                                                                               |
| Counter measurements               | Edge counting, pulse, pulse width, semi-period, period, two-edge separation           |
| Position measurements              | X1, X2, X4 quadrature encoding with Channel Z reloading; two-pulse encoding           |
| Output applications                | Pulse, pulse train with dynamic updates, frequency division, equivalent time sampling |
| Internal base clocks               | 100 MHz, 20 MHz, 100 kHz                                                              |
| External base clock frequency      | 0 MHz to 25 MHz                                                                       |
| Base clock accuracy<br>(warranted) | 50 ppm                                                                                |

| Inputs                     | Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock                      |
|----------------------------|--------------------------------------------------------------------------------|
| Routing options for inputs | Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR, many internal signals</a,b>     |
| FIFO                       | 127 samples per counter                                                        |
| Data transfers             | Dedicated scatter-gather DMA controller for each counter/timer, programmed I/O |

# Phase-Locked Loop (PLL)

Table 4. Reference Clock Locking Frequencies

| Reference Signal       | Locking Input Frequency (MHz) |
|------------------------|-------------------------------|
| PXIe_DSTAR <a,b></a,b> | 10, 20, 100                   |
| PXI_STAR               | 10, 20                        |
| PXIe-CLK100            | 100                           |
| PXI_TRIG <07>          | 10,20                         |
| PFI <015>              | 10,20                         |

| Outside of | 100 MHz Timebase; other signals derived from 100 MHz Timebase including 20 MHz |
|------------|--------------------------------------------------------------------------------|
| PLL        | and 100 kHz Timebases                                                          |
|            |                                                                                |

# **External Digital Triggers**

| Source                                     | Any PFI, PXIe_DSTAR <a,b>, PXI_TRIG, PXI_STAR</a,b>                                     |
|--------------------------------------------|-----------------------------------------------------------------------------------------|
| Polarity                                   | Software-selectable for most signals                                                    |
| Analog output function                     | Start Trigger, Pause Trigger, Sample Clock, Sample Clock<br>Timebase                    |
| Counter/timer functions                    | Gate, Source, HW_Arm, Aux, A, B, Z, Up_Down, Sample Clock                               |
| Digital waveform generation (DO) function  | Start Trigger, Pause Trigger, Sample Clock, Sample Clock<br>Timebase                    |
| Digital waveform acquisition (DI) function | Start Trigger, Reference Trigger, Pause Trigger, Sample Clock,<br>Sample Clock Timebase |

# **Device-to-Device Trigger Bus**

| Input source          | PXI_TRIG <07>, PXI_STAR, PXIe-DSTAR <a,b></a,b> |
|-----------------------|-------------------------------------------------|
| Output<br>destination | PXI_TRIG <07>, PXIe_DSTARC                      |
| Output<br>selections  | 10 MHz Clock; many internal signals             |

| Debounce filter settings | 90 ns, 5.12 $\mu s$ , 2.56 ms, custom interval, disable; programmable high and low transitions; selectable per input |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|
|--------------------------|----------------------------------------------------------------------------------------------------------------------|

### **Bus Interface**

| Form factor           | x1 PXI Express peripheral module, specification rev 1.0 compliant                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Slot<br>compatibility | x1 and x4 PXI Express or PXI Express hybrid slots                                                                       |
| DMA<br>channels       | 7 DMA, analog output, digital input, digital output, counter/timer 0, counter/timer 1, counter/timer 2, counter/timer 3 |

# **Power Requirements**



**Notice** The protection provided by the PXIe-6739 can be impaired if it is used in a manner not described in the user documentation.

| +3.3 V | 3.0 W  |
|--------|--------|
| +12 V  | 20.8 W |

### **Current Limits**



**Caution** Exceeding the current limits may cause unpredictable behavior by the device and/or chassis.

| +5 V terminal (connector 0)              | 1 A maximum <sup>6</sup> [6] |
|------------------------------------------|------------------------------|
| +5 V terminal (connector 1)              | 1 A maximum <sup>[6]</sup>   |
| P0/P1/P2/PFI and +5 V terminals combined | 1.4 A maximum                |

# **Physical**

| Dimensions (not including connectors) | 16 cm x 10 cm (6.3 in. x 3.9 in.) |
|---------------------------------------|-----------------------------------|
| Weight                                | 173 g (6.1 oz)                    |
| I/O connector                         | 2 68-pin VHDCI                    |

### **Calibration**

| Recommended warm-up time | 15 minutes |
|--------------------------|------------|
| Calibration interval     | 2 years    |

# **Safety Voltages**

Connect only voltages that are below these limits.

6. Has a self-resetting fuse that opens when current exceeds this specification.

| Channel-to-earth ground | ±11 V, Measurement Category I |
|-------------------------|-------------------------------|
|-------------------------|-------------------------------|

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

#### **Shock and Vibration**

| Operational shock | 30 g peak, half-sine, 11 ms pulse  (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)                                             |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Random vibration  |                                                                                                                                                                 |  |
| Operating         | 5 to 500 Hz, 0.3 g RMS                                                                                                                                          |  |
| Nonoperating      | 5 to 500 Hz, 2.4 g RMS  Nonoperating (Tested in accordance with IEC 60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.) |  |

#### **Environmental**

| Maximum altitude | 2,000 m |
|------------------|---------|
| Pollution Degree | 2       |

#### Indoor use only.



Note Clean the device with a soft, non-metallic brush. Make sure that the device is completely dry and free from contaminants before returning it to service.

This product meets the requirements of the following environmental standards for electrical equipment for measurement, control, and laboratory use.

### **Operating Environment**

| Ambient<br>temperature<br>range | 0 to 55 °C  (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets  MIL-PRF-28800FClass 3 low temperature limits and MIL-PRF-28800F Class 2 high temperature limit.) |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relative<br>humidity<br>range   | 10 to 90% RH, noncondensing (Tested in accordance with IEC 60068-2-56.)                                                                                                         |

### **Storage Environment**

| Ambient temperature range | -40 to 71 °C |
|---------------------------|--------------|
|                           |              |

| Relative humidity range | 5 to 95% RH, noncondensing |
|-------------------------|----------------------------|
|-------------------------|----------------------------|

# **Safety Compliance Standards**

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1



**Note** For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

### **Electromagnetic Compatibility**

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions



**Note** In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.



**Note** Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.



Note For EMC declarations and certifications, and additional information, refer to the Online Product Certification section.

#### **Product Certifications and Declarations**

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit <u>ni.com/product-certifications</u>, search by model number, and click the appropriate link.

### **Environmental Management**

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

#### **EU and UK Customers**

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

#### 电子信息产品污染控制管理办法(中国RoHS)

• ◎ ⑤ ● 中国RoHS — NI符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于NI中国RoHS合规性信息,请登录 ni.com/environment/ rohs china。 (For information about China RoHS compliance, go to ni.com/ environment/rohs china.)